题 目: Kernel Variable Importance Measure with Applications
主讲人:刘妍岩 教授
单 位:武汉大学
时 间:2025年11月12日 14:30
腾讯ID:868-617-560
摘 要:This talk introduces a novel kernel variable importance measure (KvIM) based on the maximum mean discrepancy (MMD). KvIM can effectively measure the importance of each individual dimension in contributing to the distributional difference by constructing weighted MMD and applying perturbations to evaluate changes in MMD through assigned weights. KvIM has several notable advantages: it is nonparametric and model-free, accounts for dependencies among dimensions, and is suitable for high-dimensional data. We establish the consistency of the empirical KvIM under general conditions, along with its theoretical properties in high-dimensional settings. Furthermore, we apply KvIM to classification problems and streaming datasets, proposing a KvIM-enhanced classification approach and an online KvIM. These applications demonstrate the practical utility of the proposed KvIM in diverse scenarios, as justified through extensive numerical experiments.
简 介:刘妍岩 武汉大学一本道无码
教授,博士生导师。2001年获武汉大学理学博士学位。主要研究方向为删失数据半参数统计推断、复杂高维数据模型结构选择以及大数据分布式计算等。曾到美国北卡来罗纳大学教堂山分校、加拿大Simon-Fraser大学、香港理工大学、香港中文大学、德国Greifswald大学等学校短期访问和工作。主持完成国家自然科学基金以及教育部基金项目6项,在统计学期刊 Journal of Machine Learning Research, Biometrics, Biostatistics, Genetics,Lifetime Data Analysis等期刊发表SCI研究论文六十余篇。目前担任国际统计学期刊《Statistical Papers》副主编(2020-),《数理统计与管理》副主编(2022.01-2025.12),中国现场统计学会第十一届理事会常务理事(2020-),中国数学会女专家工作委员会委员(2021-),全国应用统计专业学位研究生教育指导委员会委员(2022.01-)。