报告题目:Long-time Dynamics of the Fisher-KPP Nonlocal Diffusion Equation with Free Boundary
主 讲 人:杜 一 宏
单 位:澳大利亚新英格兰大学
时 间:3月11日9:00
腾 讯 ID:314 181 749
密 码:123456
摘 要:
Propagation has been modelled by reaction-diffusion equations since the pioneering works of Fisher and Kolmogorov-Peterovski-Piskunov (KPP). Much new developments have been achieved in the past a few decades on the modelling of propagation, with traveling wave and related solutions playing a central role. In this talk, I will report some recent results obtained with several collaborators on the Fisher-KPP equation with free boundary and "nonlocal diffusion". A key feature of this nonlocal equation is that the propagation may or may not be determined by traveling wave solutions. There is a threshold condition on the kernel function which determines whether the propagation has a finite speed or infinite speed (known as accelerated spreading). For some typical kernel functions, we obtain sharp estimates of the spreading speed (whether finite or infinite).
简 介:
杜一宏教授,1988年在山东大学数学系获得博士学位,并留校工作;1990年赴英国Heriot-Watt大学访问,1991年至今在澳大利亚新英格兰大学工作,现为该校数学系教授。杜一宏教授是非线性泛函分析、偏微分方程及其应用等领域的国际知名专家。多次赴中国、美国、英国、德国、法国、西班牙,日本,加拿大等国家和地区的高校或一本道无码
机构访问。在Arch. Rational Mech. Anal., SIAM J. Math. Anal., J. Funct. Anal., J. European Math. Soc., Trans. Amer. Math. Soc., J. Differ. Equations, Calc. Var. Partial Differ. Equ., J. Math. Pures Appl.等国际知名期刊上发表论文120余篇(他引1700余次),并出版专著2部。自2003年持续获得澳大利亚国家自然科学基金的资助,自2013年任澳大利亚国家自然科学基金委评审专家。目前,担任多个国际期刊杂志的编委及20余个国际期刊杂志的特约审稿人。